Skip to content

ROCKPro64 - Stromaufnahme wenn OFF

ROCKPro64
  • Gestern beim Testen ist mir was aufgefallen, was ich bis dahin noch nie bemerkt habe.

    IMG_20190301_100249_ergebnis.jpg

    Stromaufnahme so ca. 4,6W - 5,6W wenn der ROCKPro64 läuft (incl. WiFi-Modul & 2,5 Zoll SSD am USB3-Port). Das Bord mittels

    sudo shutdown now
    

    ausgeschaltet.

    IMG_20190301_100327_ergebnis.jpg

    Und was jetzt? 7,4W wenn er aus ist?? Ich habe auch versucht mal alles an Kabeln abzuziehen. Wenn man die SSD auszieht bringt das ca. 2W Aber woher kommt die hohe Stromaufnahme? Kann das jemand bestätigen?

  • Nach dem Hinweis eines Lesers (per Mail) bin ich auch davon überzeugt, das die Messung oben Müll ist.
    Vielen Dank für den Hinweis!

  • hm, weiß nicht, ist bei mir auch so. scheint mir so, als wenn der kernel das system nicht mehr ausschaltet. müsste man mal mit dem ttl nachsehen.

  • Die Idee war, das eine evt. sehr kleine Stromaufnahme mit dieser Art "Meßgerät" nicht vernünftig erfasst werden kann.

  • 0 Stimmen
    1 Beiträge
    60 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - Secondary IP entfernen

    ROCKPro64
    5
    0 Stimmen
    5 Beiträge
    608 Aufrufe
    FrankMF

    Hallo @mabs,

    es ging bei meinem Post gar nicht um den dhcpd, also den Daemon der die Adressen verteilt. Hintergrund, ich versuche gerade mal wieder einen Router auf Basis eines ROCKPro64 zu bauen. Dabei bin ich in Kamils Debian Minimal über die zweite IP-Adresse gestolpert.

    Danke aber für deine Anregungen.

    Es gibt da aber wohl mit dem Debian Minimal irgendwelche Probleme mit dem Forwarding, so das ich das jetzt auf einem Bionic mache, dort klappt das einwandfrei. Aber dazu später ausführlich in einem anderen Thread.

  • ROCKPro64 - Armbian - NAS umgezogen

    Armbian
    2
    0 Stimmen
    2 Beiträge
    567 Aufrufe
    FrankMF

    Das NAS mit den drei 2,5 Zoll HDD Platten läuft an einem 3A Netzteil - ohne Probleme. Hat heute Nacht die Jobs einwandfrei erledigt 😉

    Link Preview Image PINE64 Community

    PINE64 is a large, vibrant and diverse community and creates software, documentation and projects.

    favicon

    (www.pine64.org)

  • ROCKPro WLan Modul

    Verschoben ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    684 Aufrufe
    Niemand hat geantwortet
  • Lokale Einstellungen

    Verschoben ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    554 Aufrufe
    Niemand hat geantwortet
  • stretch-openmediavault-rockpro64

    Verschoben Linux
    1
    0 Stimmen
    1 Beiträge
    792 Aufrufe
    Niemand hat geantwortet
  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    979 Aufrufe
    FrankMF

    Mal ein Test was der Speicher so kann.

    rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns
  • Images 0.6.x

    Verschoben Images
    30
    0 Stimmen
    30 Beiträge
    6k Aufrufe
    FrankMF

    0.6.60 released

    0.6.60: Fix pcie/nvme/sata support for 4.4, 0.6.60: Fix spi-flash access for 4.4/mainline,

    Ich bin davon ausgegangen, das 0.6.x nict mehr fortgeführt wird, okay - sieht nicht so aus.

    Sollte released werden, ist aber aus irgendeinem Grund gestern nicht passiert (lt. Kamil)