Skip to content

ROCKPro64 - kein WLan-Modul möglich?

ROCKPro64
  • Als erstes muss ich mal die Überschrift erklären, es geht hier um die Version 2.0, also das "Preproduction Board".

    Ich hatte ja schon darüber berichtet, das Kamil ein Problem mit SDIO und PCIe hat.

    (23:02:15) ayufan1: OK
    (23:02:28) ayufan1: it seems that we either have sdio0 (wifi module) or pcie
    (23:02:44) ayufan1: enabling sdio0 prevents the pcie from being powered
    (23:02:59) ayufan1: so, either, either
    (23:03:04) ayufan1: annoying 🙂
    (23:03:56) fysa: that is odd
    (23:04:08) fysa: same bus but switched?
    (23:04:38) ayufan1: not sure, like removing the resistor on 2.0 board is not enough
    (23:04:42) ayufan1: it is still being pulled
    (23:10:27) ayufan1: another possibility is a mess with clocks
    (23:10:47) ayufan1: anyway, disabling sdio0 makes it work stable 🙂

    Eben dann im IRC folgendes

    (14:38:06) ayufan1: Yes. I think that PCIe problems are solved.
    (14:38:34) ayufan1: I’m slightly worried about sdio, but maybe this is problem of 2.0 design and is solved in 2.1.

    Na gut, dann schauen wir mal in die Schaltpläne.

    Schaltplan v2.0
    Schaltplan v2.1

    Interessant ist Seite 23!

    Spannungsversorgung v2.0
    0_1532266159484_a552db5a-8d19-41da-a905-c50f23b23256-grafik.png

    Spannungsversorgung v2.1
    0_1532266211864_cb4d12e4-e3f4-43c3-8088-3ac043498002-grafik.png

    Man sieht also einen deutlichen Unterschied. Ob das jetzt eine Ursache von Kamil's Problem ist, kann ich natürlich im Moment nicht sagen. Aber am Mittwoch kommen ja meinen Sachen aus China. Darunter ist auch ein WIFI-Modul. So mit kann man dann testen ob es Änderungen am Board gibt und ob auf v2.1 das WIFI-Modul auch funktioniert.

  • Es gibt eine erste Aussage, das WLan möglich ist.

    Aber auf welchem Board, ich frag mal nach..

    Update Sieht nach v2.1 aus.

  • Ich denke ich kann da ein klein wenig Entwarnung geben. Ich bin zwar zu blöd um es ans Laufen zu bekommen, aber man sieht das es wohl lebt.

    rock64@rockpro64:~$ sudo lshw -class network
    [sudo] password for rock64: 
      *-network:0 DISABLED      
           description: Wireless interface
           physical id: 7
           logical name: wlan0
           serial: ac:83:f3:e6:1f:b2
           capabilities: ethernet physical wireless
           configuration: broadcast=yes driver=wl driverversion=0 multicast=yes wireless=IEEE 802.11
      *-network:1
           description: Ethernet interface
           physical id: 8
           logical name: eth0
           serial: aa:41:29:23:dc:d1
           size: 1Gbit/s
           capacity: 1Gbit/s
           capabilities: ethernet physical tp aui bnc mii fibre 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation
           configuration: autonegotiation=on broadcast=yes driver=st_gmac driverversion=March_2013 duplex=full ip=192.168.3.12 link=yes multicast=yes port=MII speed=1Gbit/s
    

    Wir werden dann mal auf ein Image mit WLan warten müssen, um das endgültig bestätigen zu können.

  • Heute, 5 Monate später, kann ich bestätigen das WLan möglich ist 🙂 Getestet auf einem ROCKPro64 v2.1 mit 2GB RAM.

    Eine Vorabversion von Recalbox machte es das erste Mal für mich möglich das WLan zu benutzen. Bericht

    Und PCIe ist abgeschaltet im dts File.

     pcie-phy {
                     compatible = "rockchip,rk3399-pcie-phy";
                     #phy-cells = <0x0>;
                     rockchip,grf = <0x15>;
                     clocks = <0x8 0x8a>;
                     clock-names = "refclk";
                     resets = <0x8 0x87>;
                     reset-names = "phy";
                     status = "disabled";
                     phandle = <0x8b>;
             };
     
             pcie@f8000000 {
                     compatible = "rockchip,rk3399-pcie";
                     #address-cells = <0x3>;
                     #size-cells = <0x2>;
                     aspm-no-l0s;
                     clocks = <0x8 0xc5 0x8 0xc4 0x8 0x147 0x8 0xa0>;
                     clock-names = "aclk", "aclk-perf", "hclk", "pm";
                     bus-range = <0x0 0x1f>;
                     max-link-speed = <0x2>;
                     linux,pci-domain = <0x0>;
                     msi-map = <0x0 0x89 0x0 0x1000>;
                     interrupts = <0x0 0x31 0x4 0x0 0x0 0x32 0x4 0x0 0x0 0x33 0x4 0x0>;
                     interrupt-names = "sys", "legacy", "client";
                     #interrupt-cells = <0x1>;
                     interrupt-map-mask = <0x0 0x0 0x0 0x7>;
                     interrupt-map = <0x0 0x0 0x0 0x1 0x8a 0x0 0x0 0x0 0x0 0x2 0x8a 0x1 0x0 0x0 0x0 0x3 0x8a 0x2 0x0 0x0 0x0 0x4 0x8a 0x3>;
                     phys = <0x8b>;
                     phy-names = "pcie-phy";
                     ranges = <0x83000000 0x0 0xfa000000 0x0 0xfa000000 0x0 0x1e00000 0x81000000 0x0 0xfbe00000 0x0 0xfbe00000 0x0 0x100000>;
                     reg = <0x0 0xf8000000 0x0 0x2000000 0x0 0xfd000000 0x0 0x1000000>;
                     reg-names = "axi-base", "apb-base";
                     resets = <0x8 0x82 0x8 0x83 0x8 0x84 0x8 0x85 0x8 0x86 0x8 0x81 0x8 0x80>;
                     reset-names = "core", "mgmt", "mgmt-sticky", "pipe", "pm", "pclk", "aclk";
                     status = "disabled";
    

    Also bleibt weiterhin ungeklärt, ob auch beides zusammen möglich ist. Also gleichzeitig das WLan-Modul und eine PCIe Karte.

  • 0 Stimmen
    1 Beiträge
    84 Aufrufe
    Niemand hat geantwortet
  • RockPro64 - Mainline Kernel 5.9.x vom Kamil

    Images
    5
    0 Stimmen
    5 Beiträge
    403 Aufrufe
    FrankMF

    Hoppla, nach langer Zeit mal was Neues vom Kamil.

    5.9.0-1146-ayufan released

    WIP: cdn_dp hdmi audio switch
  • 0 Stimmen
    1 Beiträge
    358 Aufrufe
    Niemand hat geantwortet
  • 0 Stimmen
    4 Beiträge
    529 Aufrufe
    FrankMF

    Das Setup heute mal getestet um zu sehen, ob das auch so funktioniert.

    LAN an meine Fritzbox (DHCP) an eth1.100 mein Notebook an eth1.200 meine PS4

    Und dann mal gemütlich eine Runde MW gezockt. Läuft alles einwandfrei 🙂

  • ROCKPro64 - LAN Schnittstelle

    Verschoben ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    368 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - Armbian - NAS umgezogen

    Armbian
    2
    0 Stimmen
    2 Beiträge
    567 Aufrufe
    FrankMF

    Das NAS mit den drei 2,5 Zoll HDD Platten läuft an einem 3A Netzteil - ohne Probleme. Hat heute Nacht die Jobs einwandfrei erledigt 😉

    Link Preview Image PINE64 Community

    PINE64 is a large, vibrant and diverse community and creates software, documentation and projects.

    favicon

    (www.pine64.org)

  • ROCKPro64 updaten

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    571 Aufrufe
    Niemand hat geantwortet
  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    981 Aufrufe
    FrankMF

    Mal ein Test was der Speicher so kann.

    rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns