Skip to content

ROCKPro64 Übersicht - was geht? **veraltet**

Angeheftet Verschoben Archiv
  • Benutzt habe ich folgendes

    Kernel/Images

    • Kernel 4.18.0-rc3-1046
    • Kernel 4.4.132 / 0.7.7

    Hardware

    • ROCKPro64 4GB
    • irgendeine SD-Karte 😉
    • Samsung 960 EVO m.2 mit 256GB
    • Samsung 860 PRO mit 256GB
    Funktion 4.4.154 Bemerkungen 4.19.0 Bemerkungen
    WLan Ja Image Mr. Fixit (4.4.169)
    LAN 941/937 Mbit/s 97 MB/s 942/942 Mbit/s 90 MB/s (iperf3 -c / iperf3 -s)
    USB2 29 MB/s 29.0 MB/s
    USB3 335 MB/s 250 MB/s 860 PRO 256GB
    USB-C Ja USB-OTG (640 Mbit/s ) ---
    PCIe 388 MB/s (5GT/s) x4 bis zu 413 MB/s (5GT/s) x4
    SATA Ja 96,8 MB/s (2,5 Zoll 1TB HDD // 122 MB/s 2,5 Zoll SSD)
    HDMI Ja Ja
    Power OFF Ja LED's aus Ja LED rot
    Suspend Power Button Ja ca. 1,4 W Nein Suspend Modul fehlt im Mainline
    Reboot Ja Ja
    USB-Boot Ja Ja USB2 - ok / USB3 - USB-Stick & USB3-to-SATA Adapter (nur mit aktivem Hub!)
    SPI Flash Ja Ja Flash-Image
    SPI Erase Ja Ja Erase-Image
    eMMC Boot Ja Ja
    Sound ja (HDMI) Line Out (System crasht) --- no soundcards ---
    GPU -- -- -- --
    Energieverbrauch 5,3 W 4,2 W Idle / PCIe mit 960er EVO m.2 (4.18.0-rc3-1042)
    rock64@rockpro64:/mnt$ lsusb
        Bus 004 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub
        Bus 003 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
        Bus 002 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
        Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
        Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub
        Bus 005 Device 002: ID 2109:0715 VIA Labs, Inc. 
        Bus 005 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub
        rock64@rockpro64:/mnt$ lspci
        00:00.0 PCI bridge: Rockchip Inc. RK3399 PCI Express Root Port Device 0100
        01:00.0 Non-Volatile memory controller: Samsung Electronics Co Ltd NVMe SSD Controller SM961/PM961
        rock64@rockpro64:/mnt$ 
    

    Wer was beisteuern kann, immer her damit!

  • Kamil hat heute das USB3 Problem auf dem Mainline-Kernel gefixt. Ab 4.17.0-rc6-1021-ayufan funktioniert USB3 jetzt. Mehr dazu morgen 😉

  • Die Geschwindigkeitsangaben bei LAN unter Bemerkungen sind ermittelt mit einem NFS-Server.

    Dabei habe ich auf dem ROCKPro64 einen NFS-Server installiert, die Freigabe lag auf der NVMe-Karte. Danach habe ich drei große Video's auf den ROCKPro64 kopiert. Aus der Erinnerung würde ich sagen, das es auf 4.4 ein wenig stabiler war. Aber ist schon recht flott 🙂

    0_1532028330936_NFS_Server.png

  • SSD an USB3 bootet wenn der u-boot im SPI-Flash ist ^^

    https://forum.frank-mankel.org/topic/375/rockpro64-usb3-bootet-von-ssd

  • Ich sehe gerade, das könnte hier auch mal neu gemacht werden.

  • Mainline 6.0.x

    Images
    6
    0 Stimmen
    6 Beiträge
    191 Aufrufe
    FrankMF

    Und RC7 released

    Link Preview Image Release 6.7.0-rc7-1185-ayufan · ayufan-rock64/linux-mainline-kernel

    Linux kernel source tree. Contribute to ayufan-rock64/linux-mainline-kernel development by creating an account on GitHub.

    favicon

    GitHub (github.com)

  • 0 Stimmen
    4 Beiträge
    527 Aufrufe
    FrankMF

    Das Setup heute mal getestet um zu sehen, ob das auch so funktioniert.

    LAN an meine Fritzbox (DHCP) an eth1.100 mein Notebook an eth1.200 meine PS4

    Und dann mal gemütlich eine Runde MW gezockt. Läuft alles einwandfrei 🙂

  • 0 Stimmen
    8 Beiträge
    1k Aufrufe
    FrankMF

    Die Verlinkung hatte ich überlesen, sorry.

    Es gibt nur eine Handvoll Karten, die im PCIe Port funktionieren. Warum, kann ich dir leider nicht beantworten. Es liegt aber mit Sicherheit an falschen Einstellungen im Kernel und an fehlenden Treibern. Ich habe hier auch eine andere Karte rumliegen, die erzeugt immer nur eine Kernel Panic 😞

    In diesem Thread steht einiges was geht und was nicht.
    https://forum.pine64.org/showthread.php?tid=6459

  • 0 Stimmen
    1 Beiträge
    637 Aufrufe
    Niemand hat geantwortet
  • Image 0.7.8 - Latest release

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    536 Aufrufe
    Niemand hat geantwortet
  • Bionic Minimal 0.7.8

    ROCKPro64
    2
    0 Stimmen
    2 Beiträge
    554 Aufrufe
    FrankMF

    Testin Testing

  • u-boot-erase-spi-rockpro64.img.xz

    Verschoben Tools
    1
    0 Stimmen
    1 Beiträge
    877 Aufrufe
    Niemand hat geantwortet
  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    979 Aufrufe
    FrankMF

    Mal ein Test was der Speicher so kann.

    rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns