Skip to content

DTS DTB Files bearbeiten

Angeheftet ROCKPro64
  • ACHTUNG, nur was für erfahrene Nutzer. Beschädigungen der Hardware nicht ausgeschlossen!! Also, Hirn einschalten!!

    Diese kleinen Platinen haben ja unzählige Funktionen, Ein- und Ausgänge usw. Das ganze muss ja irgendwie konfiguriert werden. Auf den ARM-Boards macht man das mit DTB Files.

    Wir nehmen mal eine geflashte SD-Karte und stecken die in einen Kartenleser. Dann öffnen wir die Boot Partition.

     frank@frank-MS-7A34 /media/frank/boot $ ls -la
     insgesamt 25272
     drwxr-xr-x  3 frank frank    16384 Jan  1  1970 .
     drwxr-x---+ 3 root  root      4096 Jun 13 13:35 ..
     -rw-r--r--  1 frank frank    69042 Jun 13 13:00 dtb
     drwxr-xr-x  2 frank frank     2048 Jun 10 20:44 extlinux
     -rw-r--r--  1 frank frank 19425288 Jun 10 20:45 Image
     -rw-r--r--  1 frank frank  6358282 Jun 10 20:45 initrd.img
    

    Das File was uns interessiert ist das File mit dem Namen dtb Dieses File kann man aber nicht so ohne weiteres bearbeiten, wie aber so oft unter Linux, gibt es für fast alles ein Tool. In diesem Fall heißt das Tool dtc (devive tree compiler) Das kann man so installieren.

    sudo apt-get install device-tree-compiler
    

    Dieser Compiler kann aus dem File dtb, was ein Binärfile ist, ein lesbares Textfile generieren und anders rum.

    Aus dem dtb File ein lesbares File erzeugen!

    cp /media/frank/boot/dtb /home/frank/dts
    dtc -I dtb -O dts -o testfile dtb
    
    • /media/frank/boot ist der Mountpoint
    • /home/frank/dts ist mein Testordner zum Spielen

    In dem Beispiel kopiere ich das File dtb von der SD-Karte in mein Testverzeichnis. Im nächsten Schritt wird dann aus dem dtb File das lesbare Textfile mit Namen testfile erzeugt.

    Dieses könnt ihr dann mit Eurem Lieblings Texteditor öffnen.

    code testfile
    

    Dann ist die Datei lesbar und änderbar.

    Beispiel (gekürzt)

    /dts-v1/;
    
    / {
    	compatible = "pine64,rockpro64", "rockchip,rk3399";
    	interrupt-parent = <0x1>;
    	#address-cells = <0x2>;
    	#size-cells = <0x2>;
    	model = "Pine64 RockPro64";
    
    	ddr_timing {
    		compatible = "rockchip,ddr-timing";
    		ddr3_speed_bin = <0x15>;
    		pd_idle = <0x0>;
    		sr_idle = <0x0>;
    		sr_mc_gate_idle = <0x0>;
    		srpd_lite_idle = <0x0>;
    		standby_idle = <0x0>;
    		auto_lp_dis_freq = <0x29a>;
    		ddr3_dll_dis_freq = <0x12c>;
    		phy_dll_dis_freq = <0x104>;
    		ddr3_odt_dis_freq = <0x29a>;
    		ddr3_drv = <0x28>;
    		ddr3_odt = <0x78>;
    		phy_ddr3_ca_drv = <0x28>;
    		phy_ddr3_dq_drv = <0x28>;
    		phy_ddr3_odt = <0xf0>;
    		lpddr3_odt_dis_freq = <0x29a>;
    		lpddr3_drv = <0x22>;
    		lpddr3_odt = <0xf0>;
    		phy_lpddr3_ca_drv = <0x22>;
    		phy_lpddr3_dq_drv = <0x22>;
    		phy_lpddr3_odt = <0xf0>;
    		lpddr4_odt_dis_freq = <0x320>;
    		lpddr4_drv = <0xf0>;
    		lpddr4_dq_odt = <0x28>;
    		lpddr4_ca_odt = <0x0>;
    		phy_lpddr4_ca_drv = <0x28>;
    		phy_lpddr4_ck_cs_drv = <0x28>;
    		phy_lpddr4_dq_drv = <0x3c>;
    		phy_lpddr4_odt = <0x28>;
    		phandle = <0x8f>;
    	};
    
    	aliases {
    		i2c0 = "/i2c@ff3c0000";
    		i2c1 = "/i2c@ff110000";
    		i2c2 = "/i2c@ff120000";
    		i2c3 = "/i2c@ff130000";
    		i2c4 = "/i2c@ff3d0000";
    		i2c5 = "/i2c@ff140000";
    		i2c6 = "/i2c@ff150000";
    		i2c7 = "/i2c@ff160000";
    		i2c8 = "/i2c@ff3e0000";
    		serial0 = "/serial@ff180000";
    		serial1 = "/serial@ff190000";
    		serial2 = "/serial@ff1a0000";
    		serial3 = "/serial@ff1b0000";
    		serial4 = "/serial@ff370000";
    		dsi0 = "/dsi@ff960000";
    		dsi1 = "/dsi@ff968000";
    		ethernet0 = "/ethernet@fe300000";
    	};
    
    	cpus {
    		#address-cells = <0x2>;
    		#size-cells = <0x0>;
    
    		cpu-map {
    
    			cluster0 {
    
    				core0 {
    					cpu = <0x2>;
    				};
    
    				core1 {
    					cpu = <0x3>;
    				};
    
    				core2 {
    					cpu = <0x4>;
    				};
    
    				core3 {
    					cpu = <0x5>;
    				};
    			};
    
    			cluster1 {
    
    				core0 {
    					cpu = <0x6>;
    				};
    
    				core1 {
    					cpu = <0x7>;
    				};
    			};
    		};
    
    		cpu@0 {
    			device_type = "cpu";
    			compatible = "arm,cortex-a53", "arm,armv8";
    			reg = <0x0 0x0>;
    			enable-method = "psci";
    			#cooling-cells = <0x2>;
    			dynamic-power-coefficient = <0x64>;
    			clocks = <0x8 0x8>;
    			cpu-idle-states = <0x9 0xa>;
    			operating-points-v2 = <0xb>;
    			sched-energy-costs = <0xc 0xd>;
    			cpu-supply = <0xe>;
    			phandle = <0x2>;
    		};
    
    		cpu@1 {
    			device_type = "cpu";
    			compatible = "arm,cortex-a53", "arm,armv8";
    			reg = <0x0 0x1>;
    			enable-method = "psci";
    			clocks = <0x8 0x8>;
    			cpu-idle-states = <0x9 0xa>;
    			operating-points-v2 = <0xb>;
    			sched-energy-costs = <0xc 0xd>;
    			cpu-supply = <0xe>;
    			phandle = <0x3>;
    		};
    
    		cpu@2 {
    			device_type = "cpu";
    			compatible = "arm,cortex-a53", "arm,armv8";
    			reg = <0x0 0x2>;
    			enable-method = "psci";
    			clocks = <0x8 0x8>;
    			cpu-idle-states = <0x9 0xa>;
    			operating-points-v2 = <0xb>;
    			sched-energy-costs = <0xc 0xd>;
    			cpu-supply = <0xe>;
    			phandle = <0x4>;
    		};
    
    		cpu@3 {
    			device_type = "cpu";
    			compatible = "arm,cortex-a53", "arm,armv8";
    			reg = <0x0 0x3>;
    			enable-method = "psci";
    			clocks = <0x8 0x8>;
    			cpu-idle-states = <0x9 0xa>;
    			operating-points-v2 = <0xb>;
    			sched-energy-costs = <0xc 0xd>;
    			cpu-supply = <0xe>;
    			phandle = <0x5>;
    		};
    
    		cpu@100 {
    			device_type = "cpu";
    			compatible = "arm,cortex-a72", "arm,armv8";
    			reg = <0x0 0x100>;
    			enable-method = "psci";
    			#cooling-cells = <0x2>;
    			dynamic-power-coefficient = <0x1b4>;
    			clocks = <0x8 0x9>;
    			cpu-idle-states = <0x9 0xa>;
    			operating-points-v2 = <0xf>;
    			sched-energy-costs = <0x10 0x11>;
    			cpu-supply = <0x12>;
    			phandle = <0x6>;
    		};
    
    		cpu@101 {
    			device_type = "cpu";
    			compatible = "arm,cortex-a72", "arm,armv8";
    			reg = <0x0 0x101>;
    			enable-method = "psci";
    			clocks = <0x8 0x9>;
    			cpu-idle-states = <0x9 0xa>;
    			operating-points-v2 = <0xf>;
    			sched-energy-costs = <0x10 0x11>;
    			cpu-supply = <0x12>;
    			phandle = <0x7>;
    		};
    
    		idle-states {
    			entry-method = "psci";
    
    			cpu-sleep {
    				compatible = "arm,idle-state";
    				local-timer-stop;
    				arm,psci-suspend-param = <0x10000>;
    				entry-latency-us = <0x78>;
    				exit-latency-us = <0xfa>;
    				min-residency-us = <0x384>;
    				phandle = <0x9>;
    			};
    
    			cluster-sleep {
    				compatible = "arm,idle-state";
    				local-timer-stop;
    				arm,psci-suspend-param = <0x1010000>;
    				entry-latency-us = <0x190>;
    				exit-latency-us = <0x1f4>;
    				min-residency-us = <0x7d0>;
    				phandle = <0xa>;
    			};
    		};
    	};
    
    	pmu_a53 {
    		compatible = "arm,cortex-a53-pmu";
    		interrupts = <0x1 0x7 0x8 0x13>;
    	};
    
    	pmu_a72 {
    		compatible = "arm,cortex-a72-pmu";
    		interrupts = <0x1 0x7 0x8 0x14>;
    	};
    
    	psci {
    		compatible = "arm,psci-1.0";
    		method = "smc";
    	};
    
    	timer {
    		compatible = "arm,armv8-timer";
    		interrupts = <0x1 0xd 0x8 0x0 0x1 0xe 0x8 0x0 0x1 0xb 0x8 0x0 0x1 0xa 0x8 0x0>;
    	};
    
    	xin24m {
    		compatible = "fixed-clock";
    		clock-frequency = <0x16e3600>;
    		clock-output-names = "xin24m";
    		#clock-cells = <0x0>;
    	};
    
    	dummy_cpll {
    		compatible = "fixed-clock";
    		clock-frequency = <0x0>;
    		clock-output-names = "dummy_cpll";
    		#clock-cells = <0x0>;
    	};
    
    	dummy_vpll {
    		compatible = "fixed-clock";
    		clock-frequency = <0x0>;
    		clock-output-names = "dummy_vpll";
    		#clock-cells = <0x0>;
    	};
    
    	amba {
    		compatible = "arm,amba-bus";
    		#address-cells = <0x2>;
    		#size-cells = <0x2>;
    		ranges;
    
    		dma-controller@ff6d0000 {
    			compatible = "arm,pl330", "arm,primecell";
    			reg = <0x0 0xff6d0000 0x0 0x4000>;
    			interrupts = <0x0 0x5 0x4 0x0 0x0 0x6 0x4 0x0>;
    			#dma-cells = <0x1>;
    			clocks = <0x8 0xd3>;
    			clock-names = "apb_pclk";
    			peripherals-req-type-burst;
    			phandle = <0x98>;
    		};
    
    		dma-controller@ff6e0000 {
    			compatible = "arm,pl330", "arm,primecell";
    			reg = <0x0 0xff6e0000 0x0 0x4000>;
    			interrupts = <0x0 0x7 0x4 0x0 0x0 0x8 0x4 0x0>;
    			#dma-cells = <0x1>;
    			clocks = <0x8 0xd4>;
    			clock-names = "apb_pclk";
    			peripherals-req-type-burst;
    		};
    	};
    
    	ethernet@fe300000 {
    		compatible = "rockchip,rk3399-gmac";
    		reg = <0x0 0xfe300000 0x0 0x10000>;
    		rockchip,grf = <0x15>;
    		interrupts = <0x0 0xc 0x4 0x0>;
    		interrupt-names = "macirq";
    		clocks = <0x8 0x69 0x8 0x67 0x8 0x68 0x8 0x66 0x8 0x6a 0x8 0xd5 0x8 0x166>;
    		clock-names = "stmmaceth", "mac_clk_rx", "mac_clk_tx", "clk_mac_ref", "clk_mac_refout", "aclk_mac", "pclk_mac";
    		resets = <0x8 0x89>;
    		reset-names = "stmmaceth";
    		power-domains = <0x16 0x16>;
    		status = "okay";
    		phy-supply = <0x17>;
    		phy-mode = "rgmii";
    		clock_in_out = "input";
    		snps,reset-gpio = <0x18 0xf 0x1>;
    		snps,reset-active-low;
    		snps,reset-delays-us = <0x0 0x2710 0xc350>;
    		assigned-clocks = <0x8 0xa6>;
    		assigned-clock-parents = <0x19>;
    		pinctrl-names = "default", "sleep";
    		pinctrl-0 = <0x1a>;
    		pinctrl-1 = <0x1b>;
    		tx_delay = <0x28>;
    		rx_delay = <0x20>;
    	};
    
    	dwmmc@fe310000 {
    		compatible = "rockchip,rk3399-dw-mshc", "rockchip,rk3288-dw-mshc";
    		reg = <0x0 0xfe310000 0x0 0x4000>;
    		interrupts = <0x0 0x40 0x4 0x0>;
    		clock-freq-min-max = <0x30d40 0x2faf080>;
    		clocks = <0x8 0x1ee 0x8 0x4d 0x8 0x9c 0x8 0x9d>;
    		clock-names = "biu", "ciu", "ciu-drive", "ciu-sample";
    		fifo-depth = <0x100>;
    		power-domains = <0x16 0x1c>;
    		status = "okay";
    		clock-frequency = <0x2faf080>;
    		supports-sdio;
    		bus-width = <0x4>;
    		disable-wp;
    		cap-sd-highspeed;
    		cap-sdio-irq;
    		keep-power-in-suspend;
    		mmc-pwrseq = <0x1c>;
    		non-removable;
    		num-slots = <0x1>;
    		pinctrl-names = "default";
    		pinctrl-0 = <0x1d 0x1e 0x1f>;
    		sd-uhs-sdr104;
    	};
    
    	dwmmc@fe320000 {
    		compatible = "rockchip,rk3399-dw-mshc", "rockchip,rk3288-dw-mshc";
    		reg = <0x0 0xfe320000 0x0 0x4000>;
    		interrupts = <0x0 0x41 0x4 0x0>;
    		clock-freq-min-max = <0x61a80 0x8f0d180>;
    		clocks = <0x8 0x1ce 0x8 0x4c 0x8 0x9a 0x8 0x9b>;
    		clock-names = "biu", "ciu", "ciu-drive", "ciu-sample";
    		fifo-depth = <0x100>;
    		power-domains = <0x16 0x1b>;
    		status = "okay";
    		clock-frequency = <0x2faf080>;
    		supports-sd;
    		bus-width = <0x4>;
    		cap-mmc-highspeed;
    		cap-sd-highspeed;
    		disable-wp;
    		num-slots = <0x1>;
    		vqmmc-supply = <0x20>;
    		pinctrl-names = "default";
    		pinctrl-0 = <0x21 0x22 0x23 0x24>;
    		card-detect-delay = <0x320>;
    	};
    
    	sdhci@fe330000 {
    		compatible = "rockchip,rk3399-sdhci-5.1", "arasan,sdhci-5.1";
    		reg = <0x0 0xfe330000 0x0 0x10000>;
    		interrupts = <0x0 0xb 0x4 0x0>;
    		arasan,soc-ctl-syscon = <0x15>;
    		assigned-clocks = <0x8 0x4e>;
    		assigned-clock-rates = <0xbebc200>;
    		clocks = <0x8 0x4e 0x8 0xf0>;
    		clock-names = "clk_xin", "clk_ahb";
    		clock-output-names = "emmc_cardclock";
    		#clock-cells = <0x0>;
    		phys = <0x25>;
    		phy-names = "phy_arasan";
    		power-domains = <0x16 0x17>;
    		status = "okay";
    		bus-width = <0x8>;
    		mmc-hs200-1_8v;
    		supports-emmc;
    		non-removable;
    		keep-power-in-suspend;
    		phandle = <0x96>;
    	};
    

    Das dts des ROCKPro64. Nun kann man die Änderungen vornehmen und abspeichern. Danach muss man das File wieder in das Binärformat umwandeln.

    Aus dem testfile wieder ein dtb File erzeugen!

    dtc -I dts -O dtb -o dtb testfile
    cp /home/frank/dts/dtb /media/frank/boot
    

    Sollte selbsterklärend sein, macht aus dem testfile wieder ein dtb und kopiert es auf die SD-Karte zurück.

    Danach kann man dann seine Änderungen ausprobieren.

  • Hat sich was geändert?

    Neuer Pfad:

    cd /boot/dtbs/4.4.132-1066-rockchip-ayufan-g48b9d1455011/rockchip
    

    Übersetzen

    dtc -I dtb -O dts -f rk3399-rockpro64.dtb -o testfile.dts
    

    Bearbeiten

    code testfile.dts
    

    Zurück

     dtc -I dts -O dtb -f testfile.dts -o rk3399-rockpro64.dtb
    
  • Oder, ganz einfach

    sudo dtedit
    

    🙂

  • FrankMF FrankM hat am auf dieses Thema verwiesen

  • TwisterOS

    Images
    1
    0 Stimmen
    1 Beiträge
    226 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - Release 0.10.6 Was geht?

    Angeheftet ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    384 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - Anpassen resize_rootfs.sh

    Angeheftet ROCKPro64
    3
    0 Stimmen
    3 Beiträge
    421 Aufrufe
    FrankMF

    Seit Release 0.10.10 ist das automatische Vergrößern der Root Partition mit drin 🙂

    0.10.10: Support automated resize when booting from nvme

    Einfach das Image auf die NVMe SSD schreiben, ab in den ROCKPro64 und fertig! Nach dem Booten wird die Partition dann automatisch auf die maximal mögliche Größe erweitert.

    Kamil hat das Script auch ein wenig angepasst.

    case $dev in /dev/mmcblk?p?) DISK=${dev:0:12} PART=${dev:13} NAME="sd/emmc" ;; /dev/sd??) DISK=${dev:0:8} PART=${dev:8} NAME="hdd/ssd" ;; /dev/nvme?n?p?) DISK=${dev:0:12} PART=${dev:13} NAME="pcie/nvme" ;;

    Das Resultat bei einer Samsung 979 EVO mit 500GB Speicher

    rock64@rockpro64:~$ df -h Filesystem Size Used Avail Use% Mounted on udev 918M 0 918M 0% /dev tmpfs 192M 5.2M 187M 3% /run /dev/nvme0n1p4 459G 1.2G 439G 1% / tmpfs 957M 0 957M 0% /dev/shm tmpfs 5.0M 4.0K 5.0M 1% /run/lock tmpfs 957M 0 957M 0% /sys/fs/cgroup /dev/nvme0n1p3 229M 44M 169M 21% /boot /dev/nvme0n1p2 12M 0 12M 0% /boot/efi tmpfs 192M 0 192M 0% /run/user/1000

    Perfekt. Danke Kamil!

  • ROCKPro64 - Debian 10.1

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    391 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - Booten von USB3

    ROCKPro64
    3
    0 Stimmen
    3 Beiträge
    369 Aufrufe
    FrankMF

    Yeah, genau das worauf ich auch warte.

    Wenn ich das richtig mitbekommen habe, könnte das Kamil's nächster Punkt auf seiner Liste sein.

  • ROCKPro64 - Stromverbrauch

    Hardware
    1
    0 Stimmen
    1 Beiträge
    781 Aufrufe
    Niemand hat geantwortet
  • Kernel 4.4.x

    Angeheftet Images
    45
    0 Stimmen
    45 Beiträge
    4k Aufrufe
    FrankMF

    4.4.202-1237-rockchip-ayufan released

    PATCH: kernel 4.4.201-202
  • ROCKPro64 - Übersicht

    Angeheftet Verschoben Hardware
    8
    0 Stimmen
    8 Beiträge
    6k Aufrufe
    FrankMF

    Bericht der Zeitschrift Make.

    Link Preview Image Bastelrechner NanoPC-T4 und ROCKPro64: Mehr Raspi-Konkurrenz mit Rockchip

    Leistungsfähige Raspi-Konkurrenten setzen zunehmend auf den Chip-Hersteller Rockchip. Zwei neue RK3399-Boards eröffnen die Alternative: kompakt oder günstig?

    favicon

    Make (www.heise.de)