Skip to content

ROCKPro64 - RTC

Hardware
  • Unser ROCKPro64 hat eine RTC (RealTimeClock), so wie jeder ausgewachsene PC kann man diese Uhr mit einer Batterie puffern. So wie die BIOS Batterien in Euren PCs.

    Dazu hat der ROCKPro64 einen Anschluss auf dem Board.

    IMG_20200509_162818.jpg

    An RTC + und - wird die Batterie (CR1220-3V) angeschlossen. Hier der entsprechende Schaltplan. Auf Seite 18 unter PMIC RK808-D findet ihr die RTC Schaltung.

    Wenn man jetzt den ROCKPro64 ohne Netzwerkverbindung startet schaut man sich mal die RTC an.

    root@rockpro64:~# dmesg | grep rtc                                              
    [    4.798978] rk808-rtc rk808-rtc: registered as rtc0                          
    [    4.807268] OF: graph: no port node found in /i2c@ff3d0000/typec-portc@22    
    [    5.032372] rk808-rtc rk808-rtc: setting system clock to 2013-01-18T14:13:22)
    

    Nun stellen wir die RTC nach der Systemzeit.

    hwclock -w
    

    Kontrollieren

    root@rockpro64:~# timedatectl                                                  
               Local time: Sat 2020-05-09 16:09:29 CEST                        
           Universal time: Sat 2020-05-09 14:09:29 UTC                          
                 RTC time: Sat 2020-05-09 14:09:30                              
                Time zone: Europe/Berlin (CEST, +0200)                          
    System clock synchronized: no                                                  
              NTP service: inactive                                            
              RTC in local TZ: no  
    

    Ok, nun ist die Systemzeit gleich der RTC. Danach neustarten.

    Zeit erneut kontrollieren.

    root@rockpro64:~# dmesg | grep rtc                                              
    [    4.804679] rk808-rtc rk808-rtc: registered as rtc0                          
    [    4.812980] OF: graph: no port node found in /i2c@ff3d0000/typec-portc@22    
    [    5.059011] rk808-rtc rk808-rtc: setting system clock to 2020-05-09T14:10:27)
    

    Die RTC hat nun die Zeit, die wir gesetzt hatten. Ich denke, das sollte so passen. Wenn nicht, und ich schreibe hier Blödsinn, bitte korrigieren!

  • Mainline 5.11.x

    Images
    1
    0 Stimmen
    1 Beiträge
    220 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - PCIe Probleme

    Hardware
    3
    0 Stimmen
    3 Beiträge
    304 Aufrufe
    FrankMF

    Danke für dein Feedback.

  • linux-mainline-u-boot

    Angeheftet Images
    2
    0 Stimmen
    2 Beiträge
    353 Aufrufe
    FrankMF

    2020.01-ayufan-2014-gff2cdd38 released

    ayufan: rockchip: allow to boot scsi4, as JMS585 can have 5 drives
  • Booten von der NVMe Platte

    ROCKPro64
    16
    0 Stimmen
    16 Beiträge
    7k Aufrufe
    S

    Für dies Kernal: Linux rockpro64 4.4.167-1213-rockchip-ayufan-g34ae07687fce #1 SMP Tue Jun 18 20:44:49 UTC 2019 aarch64 GNU/Linux

    Booten von der NVMe Platte nicht möglich.

    Ich folgte die folgende Schritte. Leider funktioniert es nicht. Es gibt einen Fehler in Boot.

    Ohne RAID oder LVM config.

    Specs:
    Rockpro64
    Marvel PCIe 88se9230 karte
    SANDISK SSD 120 GB

  • eMMC Modul

    Hardware
    1
    0 Stimmen
    1 Beiträge
    2k Aufrufe
    Niemand hat geantwortet
  • DTS DTB Files bearbeiten

    Angeheftet ROCKPro64
    3
    0 Stimmen
    3 Beiträge
    1k Aufrufe
    FrankMF

    Oder, ganz einfach

    sudo dtedit

    🙂

  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    982 Aufrufe
    FrankMF

    Mal ein Test was der Speicher so kann.

    rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns
  • Serielle Konsole UART2

    Angeheftet Verschoben Hardware
    8
    0 Stimmen
    8 Beiträge
    3k Aufrufe
    FrankMF

    Ich verweise mal auf einen Artikel auf einer Webseite von mir, der Einsteiger Niveau hat.
    https://frank-mankel.de/wichtig/serielle-konsole

    Wenn es dann noch Probleme gibt, einfach fragen.

    Und beachte bitte, das wir hier nicht über PIs schreiben, sondern über ROCKPros. Da könnte es kleine Unterschiede geben. https://www.raspberrypi.org/documentation/configuration/uart.md