Skip to content

Release Empfehlung für Einsteiger

Verschoben Archiv
  • Bei den ganzen Releases und Pre-Releases kann man ja völlig den Überblick verlieren, deswegen hier eine kurze Anleitung für Einsteiger.

    Schritt 1

    Derzeit funktioniert der Bootvorgang mit SD-Karte einwandfrei, eMMC-Karte soll funktionieren! (ich habe aktuell keine). Am einfachsten für Einsteiger ist es eine SD-Karte zu beschreiben.

    Schritt 2

    Die Installation auf den Mainline-Kernel upgraden

    Eine Anleitung dazu findet ihr hier.

    Aktuell sehr stabile Version ist die

    rock64@rockpro64:~$ uname -a
    Linux rockpro64 4.18.0-rc3-1042-ayufan-gc1c3de67a7c1 #1 SMP PREEMPT Wed Jul 4 20:17:49 UTC 2018 aarch64 aarch64 aarch64 GNU/Linux
    

    Ich werde versuchen, das hier recht aktuell zu halten!

  • Sieht so aus, als wenn wir ein neues Traumpaar haben. 🙂

    0.7.7

    und

    rock64@rockpro64:/mnt$ uname -a
    Linux rockpro64 4.18.0-rc3-1046-ayufan-ge76778b6aa4b #1 SMP PREEMPT Thu Jul 19 14:10:17 UTC 2018 aarch64 aarch64 aarch64 GNU/Linux
    

  • RockPro64 - Mainline Kernel 5.9.x vom Kamil

    Images
    5
    0 Stimmen
    5 Beiträge
    410 Aufrufe
    FrankMF

    Hoppla, nach langer Zeit mal was Neues vom Kamil.

    5.9.0-1146-ayufan released

    WIP: cdn_dp hdmi audio switch
  • Armbian 20.08 (Caple) released

    Armbian
    1
    0 Stimmen
    1 Beiträge
    293 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - PCIe Probleme

    Hardware
    3
    0 Stimmen
    3 Beiträge
    304 Aufrufe
    FrankMF

    Danke für dein Feedback.

  • ROCKPro64 - Anpassen resize_rootfs.sh

    Angeheftet ROCKPro64
    3
    0 Stimmen
    3 Beiträge
    421 Aufrufe
    FrankMF

    Seit Release 0.10.10 ist das automatische Vergrößern der Root Partition mit drin 🙂

    0.10.10: Support automated resize when booting from nvme

    Einfach das Image auf die NVMe SSD schreiben, ab in den ROCKPro64 und fertig! Nach dem Booten wird die Partition dann automatisch auf die maximal mögliche Größe erweitert.

    Kamil hat das Script auch ein wenig angepasst.

    case $dev in /dev/mmcblk?p?) DISK=${dev:0:12} PART=${dev:13} NAME="sd/emmc" ;; /dev/sd??) DISK=${dev:0:8} PART=${dev:8} NAME="hdd/ssd" ;; /dev/nvme?n?p?) DISK=${dev:0:12} PART=${dev:13} NAME="pcie/nvme" ;;

    Das Resultat bei einer Samsung 979 EVO mit 500GB Speicher

    rock64@rockpro64:~$ df -h Filesystem Size Used Avail Use% Mounted on udev 918M 0 918M 0% /dev tmpfs 192M 5.2M 187M 3% /run /dev/nvme0n1p4 459G 1.2G 439G 1% / tmpfs 957M 0 957M 0% /dev/shm tmpfs 5.0M 4.0K 5.0M 1% /run/lock tmpfs 957M 0 957M 0% /sys/fs/cgroup /dev/nvme0n1p3 229M 44M 169M 21% /boot /dev/nvme0n1p2 12M 0 12M 0% /boot/efi tmpfs 192M 0 192M 0% /run/user/1000

    Perfekt. Danke Kamil!

  • Mainline 5.3.x

    Images
    3
    0 Stimmen
    3 Beiträge
    390 Aufrufe
    FrankMF

    5.3.0-1119-ayufan released

    ayufan: defconfig: enable DRM_PANFROST/DRM_LIMA
  • Mainline 4.20.0-rc6

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    403 Aufrufe
    Niemand hat geantwortet
  • SPI funktioniert

    ROCKPro64
    4
    0 Stimmen
    4 Beiträge
    843 Aufrufe
    FrankMF

    Wie ich jetzt mehrmals festgestellt habe, ist das System von der USB3 Platte instabil.

    [111985.654653] EXT4-fs error (d4: inode #16354: comm systemd: r[111985.837719] EXT4-fs error

    Das killt dann das komplette System.

    Ob das an meiner Hardware liegt, weiß ich nicht. Also, wer da draußen so ein System einsetzen will, Vorsicht! Die USB3-Schnittstelle scheint noch einige Bugs zu haben!!

    Mein NVMe System dagegen ist absolut stabil!

  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    983 Aufrufe
    FrankMF

    Mal ein Test was der Speicher so kann.

    rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns